
Regular Pumping Lemma
We use one of the provided examples in JFLAP to explain the regular pumping lemma.

Remember that to show that a language is not regular using the contrapositive argument of
the pumping lemma, you have to show the following.

Regardless of the value of m chosen, there exists some string w in the provided language
of length greater than m such that there is no way that the string w can be decomposed into
three parts w = xyz and satisfy the following 3 conditions

1. |y| > 0

2. |xy| ≤ m

3. xyiz is in the language for all i ≥ 0.

JFLAP treats the showing of a language to not be regular in a manner similar to adver-
sarial arguments. That is, the user is given the chance to pick a pumping length and the
computer will show why that will not work by first producing a string and then showing the
user how regardless of which way they go about making their partition into x, y and z.

The chosen example is L = {anbkcn+k : n ≥ 0, k ≥ 0}
Solution
As with any proof involving showing a language to not be regular using the pumping

lemma, assume the language is regular and has a pumping length m.
The next step is to come up with a string that cannot be decomposed in accordance with

the requirements of the pumping lemma.
If you click ’Explain’ in JFLAP you get an explanation of the solution, which we present

here, with some slight edits.
Unfortunately no valid partition of w exists. For any m value, a possible value for w is

ambmc2m. The y value thus would be a multiple of a. That is, it is some string of as. If
i = 0 (also called pumping down), the string becomes at most am−1bmc2m, which is not in
the language. Thus, the language is not regular.

1

To help with the understanding of this proccess, JFLAP allows you to pick whether you
or the computer makes the first move.

If you pick ’you go first’ in this case, you are allowed to enter a value of m. In this case,
say we enter a value of 3 and then the computer comes up with the string aaabbbcccccc.

Upon being presented with the decomposition screen, we’ve used the sliders to make
x = aa and y = a. Note that we cannot make y straddle the boundary between the as and
the bs because that would violate the length constraint on xy.

2

Clicking the ’set xyz’ button makes the computer then do the work of producing a
contradiction as seen below

3

More attempts can be made if needed. Here are the results of 3 attempts

My Attempts:

3: X = a; Y = aaa; Z = bbbbcccccccc; I = 2; Failed

2: X = ; Y = a; Z = abbcccc; I = 0; Failed

1: X = aa; Y = a; Z = bbbcccccc; I = 0; Failed

If instead we choose to let the computer go first, we are given the job of doing the
pumping.

Here is a screenshot showing an instance of that. Note that just for variety, we’ve chosen
to set i = 2 and pump the string up.

4

5

